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Abstract

A new atmospheric turbulence screen generator is developed for use in performance

calculations of adaptive optics systems valid over a wide range of atmospheric turbulence

parameters. The screen generator accounts for diffraction effects caused by weak turbu-

lence and incorporates the phase, amplitude, and cross statistics of the perturbed optical

field. The wavefront's phase and amplitude perturbations are taken from the correlation

functions developed by Lee and Harp and the cross correlation of the phase and ampli-

tude derived in this thesis. The screen generator uses a modal representation to perform

a Fourier series expansion of the wavefront phase and amplitude over a square area. The

phase, amplitude, and cross power spectral densities determined from the correlation func-

tions are used in the Fourier series expansion. The mean square value and the structure

functions of the phase, amplitude, and cross terms are calculated to within 1% of the

theoretical values in a Monte Carlo experiment using the screen generator. Monte Carlo

experiments performed using the screen generator showed the amplitude perturbations

can significantly reduce the accuracy of full-aperture tilt estimation using image centroid

motion. However, since the amplitude perturbations affect the image centroid, the tilt

estimate using the combined amplitude and phase screen allows for a higher Strehl ratio

than using only the phase to estimate the correction.

xvi



ATMOSPHERIC TURBULENCE SCINTILLATION EFFECTS ON

WAVEFRONT TILT ESTIMATION

L Introduction

When the aperture size of an optical system limits the resolution of the system it

is referred to as diffraction limited. Atmospheric turbulence replaces the aperture size

as the limiting factor in optical performance for large aperture systems, when imaging

or propagating through the earth's atmosphere. The heating and cooling of the earth's

surface along with a mixing effect of wind causes the atmosphere to be turbulent. As a

wavefront from an object travels through this turbulent atmosphere, the turbulence will

cause different sections of the wavefront to experience different optical path lengths. The

optical path differences will bend the wavefront, resulting in optical field perturbations.

These random fluctuations in the optical field can cause extensive blurring in imaging

through the atmosphere and is the limiting factor in large aperture ground-based imaging

systems. These fluctuations can also cause significant spreading of the spot-size of a laser

propagating long distances through the atmosphere, significantly reducing the power on

target. In the past few decades, advances in adaptive optical systems have made it feasible

to approach resolutions near the diffraction limit for viewing objects beyond the atmosphere

[6,8,12].

Many papers have developed simulation techniques that incorporate the phase per-

turbations caused by atmospheric turbulence [2,4,11,12,15], but optical field perturbations

can take the form of both phase and amplitude perturbations. Even if perfect phase cor-

rection is applied by the adaptive optical system, it cannot correct for the amplitude

perturbations. Therefore, to accurately evaluate the atmospheric turbulence effects, the

amplitude perturbations should be considered. This thesis develops a random screen gen-

erator that simulates both the phase and amplitude optical field perturbations due to weak

turbulence.
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The amplitude perturbations effects on imaging have been studied to some degree,

but there hasn't been much study in how the amplitude perturbations affect the phase

measurements required in adaptive optical systems. This thesis will study the effects of

amplitude perturbations on full aperture tilt estimation. The tilt estimation in an adaptive

optics system is used to remove the overall phase tilt in the perturbed wavefront.

1.1 Atmospheric Turbulence Modeling

Modeling the effects of turbulence has a received a great deal of attention. Most of

the work on optical propagation through turbulence is based upon the seminal efforts of

Fried, Kolmogorov, and Tatarski [3,9, 13]. Kolmogorov suggested that over an extended

propagation path the index of refraction differences could be modeled as homogeneous and

isotropic random processes. Homogeneity implies the statistics of the turbulent flow are

independent of the position within the turbulent flow. The isotropic assumption is much

stronger since it implies homogeneity and also requires that the second and higher order

statistics of the turbulence are only dependent upon the radial distance between any two

points [6,12].

Many papers have used the geometric optics calculation to model atmospheric tur-

bulence effects on images taken through the earth's turbulent atmosphere [12, 15]. The

geometric optics approach models the turbulence effects by integrating over the optical

path differences which simply add phase to the propagating wave. The approach is often

appropriate when there is little far-field turbulence (i.e., ground to space propagation).

If, however, the turbulence is extended through the entire medium, the field encounters

both phase and amplitude variations due to diffraction effects (i.e., propagation within the

turbulence). In this thesis we will incorporate the phase and amplitude effects caused by

atmospheric turbulence.

The phase perturbations have the effect of creating a wavefront randomly crinkled in

appearance and propagating in a random direction (or tilt). The amplitude effects, often

referred to as scintillation, create a speckled appearance in the intensity of the field. The

amplitude and phase perturbations have the effect of degrading the image and widening the

point spread function (psf). The random overall tilt of the wavefront phase perturbations
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has the effect of moving the image around in space, but does not reduce its sharpness. If a

very-short-exposure image is recorded (i.e., the tilt is removed), the psf can be significantly

reduced and resolution enhanced. A large portion of the image degradation is due to

the random tilt portion of the phase perturbations of the wavefront at the pupil [6, 12].

Since adaptive optics systems can only correct the phase perturbations, scintillation effects

represent the theoretical limit one can achieve in adaptive optics systems.

First, the phase and amplitude effects of the random fluctuations on the optical field

propagation must be predicted. The analysis presented here considers a diffraction calcu-

lation based upon the work of Lee and Harp to determine both the phase and amplitude

perturbation effects caused by atmospheric turbulence on the wavefront in the aperture.

The optical field statistics of the phase and amplitude perturbations used in this thesis

are taken from the correlation functions developed by Lee and Harp [10]. In addition, the

cross correlation of the phase and amplitude perturbations is derived for the first time

in this thesis. The correlations are determined by modeling the turbulence as layers of

randomly varying refractivity perpendicular to the propagation path. As the field prop-

agates through the medium, diffraction occurs at each of the layers. Due to the weak

turbulence assumption, the effects of the diffracted wave being diffracted again (second

order effects) by subsequent layers is ignored. The weak index of refraction fluctuation

model does not predict real effects of strong turbulence, such as the saturation of the log

amplitude fluctuations. To represent the perturbations in the frequency domain the power

spectral densities (psd)s are determined by taking the Fourier transform of the correlation

functions.

Analysis of the correlation functions often results in difficult analytical solutions

with no closed form. Therefore, simulations of the atmospheric turbulence are often used

to determine how optical systems will perform [2,4,11,12,15]. These previous works only

accounted for the phase effects of the turbulence. To investigate the effect of propagation

through extended turbulence, amplitude effects must be incorporated as well.

In order to study the effects of the amplitude and phase perturbations screens will

be generated to simulate the complete random optical field caused by the turbulence. A

new method of atmospheric screen generation is developed for use in performance calcula-
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tions of adaptive optics systems that is valid over a wide range of atmospheric turbulence

parameters and incorporates both phase and amplitude effects. The generated random

optical field over the aperture, E(X-), can be represented as

k() = (1 + A(g)) e (1.1)

where A(V) represents the amplitude perturbations and &(g) represents the phase pertur-

bations. The screen generator accounts for diffraction effects caused by turbulence and

incorporates the phase, amplitude, and cross statistics of the weak turbulence model. The

screen generation approach follows Welsh's paper on Fourier series (FS) based phase screen

generation [15]. Welsh's relationship for the phase screen generation is extended by using

the phase, amplitude, and cross psds. A modal representation is used to perform a FS

expansion of the wavefront phase and amplitude over a square area. The screen generator

uses the psds of the phase and amplitude perturbations, determined from the correlation

functions, in the FS expansion. The screen also incorporates the cross psd derived in this

thesis to ensure the cross statistics are satisfied.

1.2 Adaptive Optic Systems

Adaptive optic systems operate by measuring the wavefront phase of a reference

guide star, laser guide star, or the glint off the object to be "imaged" and subtracting the

phase from the object wavefront, resulting in an improvement in image quality [12,14]. On

many systems, the wavefront measurements are made with a wavefront sensor (WFS) such

as the Shack-Hartman sensor and a separate full-aperture tilt sensor. The measurements

of the WFS and the tilt sensor are converted to electrical signals which drive actuators on

the deformable mirror and the tip-tilt mirror, resulting in the desired phase correction. A

simplified adaptive optics system is illustrated in Fig. 1.1. When the phase is perfectly

measured and compensated by a system for a beacon along the same path as the object,

theory predicts perfect phase correction [12]. The result of perfect correction in a phase

only perturbed wavefront is referred to as diffraction limited performance.

However, adaptive optic systems can never reach perfect correction. Errors due to

sampling and wavefront reconstruction will always exist. In addition, when the object and
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Figure 1.1 Simplified optical configuration of an adaptive optics imaging system

reference beacon are not collocated the light travels through different turbulence. Since the

system is compensating for the beacon's turbulent path and not the turbulence the object

sees, errors in the compensation result. This is called anisoplanatism. Furthermore, even

if perfect phase correction is applied, the adaptive optics system cannot correct for the

amplitude perturbations. Therefore, the theoretical limit of adaptive optic compensation

is determined by these scintillation effects. To accurately evaluate total effects of the

atmospheric turbulence the scintillation effects should be considered.

Scintillation effects in imaging have been studied to some degree, but there hasn't

been much study in how the amplitude perturbations affect the phase measurements re-

quired in adaptive optic systems. This thesis studies the effects of scintillation on full
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aperture tilt estimation in weak turbulence. The tilt estimation is used by the tip-tilt mir-

ror in an adaptive optics system to remove the overall tilt in the wavefront. Monte-Carlo

experiments using the random screen generator will be performed to investigate the effects

of the amplitude perturbations on the full-aperture tilt estimation. Since the random tilt

contains 87% of the power in the wavefront phase fluctuations, accurate wavefront tilt es-

timation is essential to an adaptive optics system. These experiments will use the random

amplitude and phase perturbation screens produced by the screen generator developed in

this thesis to determine the effect of the amplitude perturbations on the tilt estimation.

1.3 Summary of key results

The theoretical statistics were developed for the amplitude and phase perturbations

of the optical field caused by weak turbulence. The statistics were applied in the develop-

ment of a random optical field screen generator. The mean square value and the structure

functions of the phase, amplitude, and cross terms are calculated in a Monte Carlo exper-

iment using the screen generator to within 1% of the theoretical values for a number of

screen dimensions. Monte Carlo experiments performed using the screen generator deter-

mined the amplitude perturbations can significantly reduce the accuracy of full-aperture

tilt estimation using image centroid motion. However, using the combined amplitude and

phase screen image centroid to estimate tilt correction allowed for a higher Strehl ratio

than using only the phase to estimate the correction.

1.4 Overview

Chapter II develops the amplitude, phase, and cross correlation functions of the at-

mospheric turbulence. Chapter III determines the power spectral density (psd) functions

of the atmospheric turbulence from the correlation functions. Chapter IV uses the psds

developed in Chapter III to develop an atmospheric turbulence phase and amplitude screen

generator. Chapter V studies the effect of the amplitude perturbations on the wavefront

tilt estimation and the resulting Strehl ratios. Results are presented that indicate how am-

plitude perturbations affect the tilt estimation for various conditions of weak atmospheric
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turbulence. Chapter VI gives some conclusions about the results and recommendations for

further study.
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I. Correlation Functions of Weak Turbulence

The purpose of this section is to develop the phase, amplitude and cross correlation func-

tions for the optical field perturbations caused by atmospheric turbulence. A diffraction

based calculation is used to develop the correlation functions associated with weak scat-

tering through a random medium. The approach follows Lee and Harp's development and

results in the same functions as in their paper [10]. In addition to the phase and amplitude

correlations, the cross correlation is derived for the first time and follows an approach

similar to Troxel's paper [14].

The turbulence induced random index of refraction is modeled with thin slabs of

random refractivity perpendicular to the propagation path. Each slab is represented with

a Fourier decomposition of random phase and varying spatial frequency (see Fig. 2.1). A

wave is propagated from slab to slab where each slab can be treated as a phase-diffraction

grating. At each slab, the incident wave is diffracted resulting in two diffracted orders

and the original direction of propagation. Due to a weak scattering approximation only a

single diffraction at each slab is allowed (i.e., the diffracted orders aren't allowed to diffract

in subsequent layers). Therefore only the zeroth order has enough power to have a non-

negligible effect at the next layer. The results are integrated over the spatial frequencies

and every angle of the Fourier components to determine the amplitude and phase pertur-

bations [10]. Finally, the random field perturbations in the amplitude and phase are used

to calculate the amplitude, phase, and cross correlations.

The final solutions for the amplitude, phase and cross correlations are very similar

in form and each include three multiplicative terms: a term relating the perturbations at

one point with those at another point, the power spectrum of the refractive index, and a

weighting term which accounts for the relative perturbations at a given position along the

transmission path [10].

2.1 Derivation of Correlation Functions

Using the layered approach, the effect on the optical field can be represented as a

differential amplitude perturbation and a differential residual phase at each slab or layer
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Ilel

Figure 2.1 A cross section of the Fourier representation of the random refractivity slab,
where A(n, g) is the amplitude, 0,(,q, r) is the random phase and 2 is the
spatial frequency.

(see Fig. 2.1). The total amplitude perturbation represents the deviation from a unit

amplitude. The total phase perturbation represents the total phase deviation induced by

the refractive index perturbation. Lee and Harp derives the following differential phase

and amplitude perturbations for propagation through weak turbulence modeled as the

propagation through one of the differential slabs [10)

dPa = -ka(K)dl cos(n(x + b)) sin[7(v'k2 -m2 - k)] (2.1)

and

dP, = -ka(K)dil cos(n(x + b)) cos[77(v/k 7 1
r. -_k)]. (2.2)

Lee and Harp define k as the wavenumber, 27r/A; a(i,) as the peak amplitude of the

refractive index perturbations; b as the random phase of the refractive index; dq as the

differential propagation path length; 77 as the path length from the slab to the observation

plane; x as the direction along which the periodic Fourier component is taken; and r, as

the spatial frequency of the particular Fourier component.
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Using the binomial expansion and the assumption that r <« k the following factor

can be simplified to

, -,/k2 -k--k( 1 k 1-2)k_(1- )-1] =2 -a. (2.3)

Now, Troxel represents the perturbations in three dimensions at a particular altitude, 77,

by

Pa(i,, rv,) = A(77, g) cos(g-. - + 0o,(7, K)) sin(77a) (2.4)

and

Pp(q, g,:5) = -A(7, g) cos(Q. -+ r .)) cos(17a), (2.5)

where A(77, -) and 0o(17, k) are related to the amplitude and phase of the refractivity field

Fourier component and X is a position vector in the plane of the slab [14]. The total residual

phase and amplitude perturbations are found by integrating over all slabs distributed along

a path length, L, and all frequencies, g and can be represented as

Pa(g) = Jj di/dgA(iq, -) cos(-g• - €--o(i7, n)) sin(??a) (2.6)

PP(X) = -Jj dqd-A(n, r) cos(--. -- -COo(7, K)) cos(77a), (2.7)

where a = r 2 /(2k). Representing the perturbations in complex phasor notation, the

amplitude perturbations and residual phase perturbations of the field can be written as

Pa(g) = -)Z { JL d77d'A(77, K)e-3O°('7)e-j(I') sin(oa)} (2.8)

and

VP = -R? {J j dOjd(A7ij -jg-ý cos(ila)}(29X)f f d?7d'A(n, ')e- °('Oe- (2.9)

where 7I is an operator that takes the real portion of a complex quantity. The 7R. operator

is now dropped and the work continues with the complex phasor representations Pa(:5) and

Pp(_) given by

Pad() jd 7d-A(77, g)e-(R') sin(77a) (2.10)
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and

PP(X) = jo dr/diA(j,')e-j(-') cos(•ia), (2.11)

where A(?i, 9) = A(r7, -)e-j°o(,'?K) and a = K2/(2k) [14].

From Eqs. (2.10) and (2.11) above the development of the amplitude and phase

correlations directly follows Troxel's approach [14]. The amplitude and phase correlations

are defined as the ensemble average of the perturbations at two different locations separated

by d and can represented as

Faa(d) = (Pa(V)Pa(- d) (2.12)

and

rP()= ( Pp(g) Pp (X - J (2.13)

where the angle brackets denote the expected value of the argument.

Lee and Harp determines the correlations of the amplitude and phase perturbations

in weak turbulence as the following

raa(d) = 4k20r 2 fL fjo0 drd? rJo(rd) (D) sin 2(aq), (2.14)

and

Fpp(d- = 4k 2ir 2 j j drdfrlJo(rd))(K) cos 2 (ai7), (2.15)

where a = 1E and J0 is the zeroth order Bessel function of the first kind [10]. Equations

(2.14) and (2.15) are the key equations that describe the second order statistics of the

amplitude and phase effects due to weak turbulence. These equations form the basis for

all other statistical representations of the field effects due to the atmospheric turbulence

in this thesis.

Another key second order statistic is required to define the atmospheric turbulence

effects on the optical field. In order to investigate how the phase and amplitude perturba-

tions are related one needs to know how they are correlated (i.e., their cross correlation).

The cross correlation is defined as the ensemble average of the amplitude and phase per-

turbations taken at two different locations separated by d- The method used here is very
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similar to the approach used by Troxel to derive the angle dependent phase and amplitude

correlation functions [14]. Using the perturbation relationships in Eqs. (2.10) and (2.11),

the cross correlation can be determined by

Pap(d- (Pa(X)P;(9-- d)),

×A*(=2, ( j )ej(j.(L-d)COS(72a2)). (2.16)

Since the only random quantities are in the A terms, the other deterministic terms

can be passed through the expectation.

rap (d) = JJ f f f dq1idq 2 d -1d IC- ( A (771, K-1 ) A* (~772, ')2
Xe-j(t'r-) sin(77 iai)ej(t'( -do) cos(12a22). (2.17)

Troxel uses the following relationship derived from a Tatarski relation to perform the

expectation:

(A(71, ,uTI)A*( 772, b)) = 6s7k76(1 - i)6(• - 772)1( , 7), (2.18)

where 1(., 77) is the three dimensional refractive index power spectrum with 02 = V2 2

and 6 is the Dirac delta function [13, 14]. The 6(nl - 772) part of Eq. (2.18) is a derived

relation and should not be considered as a statement of independence of turbulent layers.

Substituting Eq. (2.18) into Eq. (2.17) gives

rap(d) = 8k 27r f fo d7ndgV(g, 77) sin(ai/) cos(ai7)e-jg'd (2.19)

and using a trigonometric identity the relation becomes

Tap(d) = 4k 27r f foL d 77dg(9, 77) sin(2a77)e-3'd. (2.20)
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The following relation from Goodman illustrates that the real part of the complex corre-

lation is twice the real valued cross correlation:

rr,(-) = 2r(P$;r)(r) +j2r(ir)(r), (2.21)

where rUVr (r) is the real correlation [6]. Therefore, the real correlation is half the real

portion of the complex one (i.e. rap(d5 = 1T9z{ap(d3}). The real correlation can now be

represented as

rap(d- = 2k27r Jf f dd ,7) sin(2c?) cos(r. d. (2.22)

The vector representation can be changed to polar coordinates where d- = rdrdO.

The integration over dO goes from 0 to 7r. The integration over dO can then be performed

using the relation

d•dcos(acos(O)) = rJo(a), (2.23)

where J0 is the zeroth order Bessel function of the first kind. Finally, the cross correlation

can be represented as

rap(d) = 2k 27r fo fo fo dOdrd?7. cos (rd cos(O)) •(,)sin(2a?)

= 2k2'r 2 j j dodrdJo(Kd)'(,K, 7) sin(2aq). (2.24)

Equation (2.24) is the cross-correlation of the amplitude and phase perturbations of the

optical field due to weak turbulence. This equation will be used throughout this thesis to

represent statistics of the cross terms of the phase and amplitude.

2.2 Correlations for a constant strength of turbulence

In order to proceed with the correlations developed in this section they need to

be related to a particular turbulent medium. The 3-D turbulence power spectrum of

the refractive index, (D(n, 7), is a function of both the turbulence along the path and

the frequency distribution. The following relation essentially breaks up the functional
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dependence of the 3-D power spectrum into the turbulence strength profile C(2() and a

normalized power spectral density 4o(K). It can be represented as the following [6,12]

1(K, 77) = 0.033C-( )n0(I), (2.25)

where Cn (7) represents the strength of turbulence along the path. The von Karman

turbulence power spectrum definition for 4)o(r) uses an inner scale, Lm, and outer scale,

L,, to represent the smallest and largest turbulence scale sizes, respectively, in a particular

medium. L, is usually on the order of ten to twenty meters, where as Lm is usually only

a few millimeters [12]. The von Karman spectrum, (DO(K), is defined as [12]

,c
2

L

4 = (r 2 + 42)11/6 (2.26)

Using Eq. (2.25), the amplitude, phase and cross correlations given in Eqs. (2.14),

(2.15), and (2.24) can be written as

raa(d) = 4k 2 7r2 j •j dr.dKJO(rd)P(K, 7) sin 2 (aq)

- 4k2ir2 (0.033) fo dnZJo(rd)Po(K)/o jd7Cn(q) sin2 (can), (2.27)

and

rPP( = 4k 2 7 0 d7dKKJo cos2(a,7)
p00

= 4k 2 7r 2 (0.033) fo dKrJo(rd)Po(K) fL d Cn(77) cos2 (a77), (2.28)

and

top(d) = 2k0ir 2 j j do7drJo(rd)P(K,,q) sin(2c,)
p00

= 2k 2 7r2 (0.033) f00dK.Jo0(rd)(o(r) 0( L dL C2() sin(2ac7). (2.29)

To compare the correlations above let's assume the strength of turbulence is constant

over the entire length of propagation. For horizontal propagation through the atmosphere
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constant turbulence is a good approximation, but for propagation up through the atmo-

sphere it is not such a good approximation, since strength of turbulence has a strong

dependence on altitude. The total turbulence over the entire path is defined as

jodC.2(,7)= (0.185)/(A/), (2.30)

where r0 is the Fried parameter of the turbulence and A is the average wavelength of the

light [3]. The Fried parameter can be interpreted as the limiting aperture size beyond

which no increase in resolution occurs.

Using Eq. (2.30), now the correlations can be integrated over the path length and

calculated as the following

r,,,(d) = 4k 27r2 (0.033) A (0.1:5) 5/3 1000 dKJo (rd) (o (r.) J0 Ldn sin 2(a?7)L ro 0 0

4k 2(0 033) ( dKKJo(rd)-%(K) - 1 sin(2aL)]\ r0 f/2 4

= 87r 4 (0.033) (0.185)•5/3 dd Jo(rd) o( 1 sin(2aL)] ,(2.31)\ro / o2a

and

L ro 0 2 4
= 4k21r2(0"033)+- (0.15 5/3j 0 d J(d)()JLdco a)

8 47r4(0.033) (0.185 5/3 00 d KKJo(rd)Po(K) 1 + sin(2-aL),

ro )o 2aL

and

r,(d) = 2k27r2(0.033)A (0.1:5 )5/3 f 00 dIoJo(Kd),o(n) JL dtsin(2 atl)
=2k2r2(00 33 )A2 (0.185' 5/3 fo00 dKJo°(d),°(n) sin2 (caL)

TI('3) \ro Jo

= 87r4 (0.033) ( 0 185 )/3 0o dnKJo(Kd)eDo() -sin 2 (aL), (2.33)
\ro f2-
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where a = l - A-2

2k - 41r

In order to present these correlations more clearly, it is also convenient to perform

a change of variables when calculating the correlations. Let n' = KL. Performing the

change of variables results in

raa(d) = 87r4 (0.033)(0.185)51/ 3 \•o/ fo d.K1'' 1
\r 0I~o(K1 2 +4-7r 2)11/6

(i'd 2irL. sin '
x J0 ' 1 L 2 sin - (2.34)

and

r -) 87r4 (0.033)(0.185) 5 / 3 ( 5/3 0 d''
oo 12 7

( LO fo (K+i 2 )11/ 6

WJ Kd 'i+27rL. i(ALW''](.5kLo 1 + ALK1s2 si ' (2.35)

and

rap (d) 8.7r 4 (0.033)(0.185) 5/3 (LO)1 j dr.'r' 1
r. (K'12 + 47r2)11/6

(. \ o 4(r L'2 sin2 (ALK (2.36)

where we have approximated the exponential in Eq. (2.26) as being approximately one.

Numerical integration was performed over r1 for the correlations above for a strength of

turbulence, Lo/ro = 100, and L = 20000. The correlation plots are shown in Figs. 2.2,

2.3, and 2.4. Notice how much wider rpp(d) is than raa(d) and rap(d). This trend indicates

that the phase perturbations are spatially correlated over a larger area than the amplitude

perturbations.
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Figure 2.2 The normalized amplitude correlation is plotted versus d for a strength of
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2.3 Structure Functions

The structure functions for these perturbations can be represented as [6,12]

Daa(d) = 2raa(O) - 2raa(d3,

= 16"r 4 (0.033)(0.185)5/3 ' d ( + 1

x1 - Jo j. L AL sin •L ' (2.37)

and

Dpp(d3 = 2rpp(O)- 2-pp(d-,

= 167r4 (0.033)(0.185) 5/ 3  L- 5/30 dt'K' 1
\r 0 I fo (K/ 2 + 47r2)11/6

[1-JOo r1 + LOs sin 2-L- 2  (2.38)

x LO) AL+ 2irL- ___

and

Dap(d) = 2Fap(o) - 2rap(d),

= 167r4(0.033)(0.185)5/3 (L-9•/ 5 / 3 fo dK , 4)
\r 0 o ( + +47r.2)11/6

x~ ~ M 21 ) i'~ 4iL sin 2 (ALK' 2

L 1 L - ALK' -) ( 4irLL) (2.39)

The wave structure function is the sum of the phase and amplitude structure functions

[6,12]

n(d) = Dpp(d)+Daa(d)
3214(0.033)(0.185)5/3 (L) 5 / 3 f' d,'.'

UUU~Jr.Jo KK (P%'2 + 4,72)1T/6

x[1 J .'d (2.40)
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2.4 Mean Square Value Functions

The mean square value of the amplitude and phase can be calculated easily from the

correlations. Letting d go to zero in Eqs. (2.34), (2.35), and (2.36) we get the ensemble

average of the squared phase and amplitude perturbations or the mean square values.

These can be represented as follows

raa(O) = 87r4 (0.033)(0.185) 5 /3 (LO~) 513 f ' dr.'r.' 2
roo o) = + 47r2)11/6

x 1 - 2i7rL2 sin (ALK'2 ] (2.41)
ALr, 2irL20

and

rvp(O) 8,r 4(0.033)(0.185) 5/3  Lo If dt't'(,2 +4r2)l6

x 1 2+•- sin ALK' (2.42)
ALr.'2  2-7rL20/J

and

Fap(O) = 8rr4 (0.033)(0.185)51/ 3  0 / d ,+'K1 /
ro (KW2 + 47r 2)11/ 6

x (ArL2 ) sin2  \4 . (2.43)

Normally, as the propagation path or wavelength increases Lo/ro increases and the

turbulence effects are stronger. For the following plots the strength of turbulence, Lo/ro,

is held constant to show the relative mean square values of the phase and amplitude

perturbations. Figure 2.5 shows the mean square value of the amplitude perturbations as

a function of L for different strengths of turbulence, Lo/ro. For constant Lo/ro, notice

how the amplitude perturbations decrease substantially as - gets large. On the other

hand, the phase contribution, plotted in Fig. 2.6, gets very large for large •-2. Note also,

the sum of the phase and amplitude mean square values is invariant to ý for constant

Lo/ro. For instance, for Lo/ro = 100 the sum of the phase and amplitude mean square
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values is 186.65. The mean cross value, rap(O), of the phase and amplitude perturbations

is plotted in Fig. 2.7. Notice how rap(o) decreases as L increases similar to the amplitude

perturbations in raa(o).
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Figure 2.5 The mean square value of the amplitude perturbations in the pupil are plotted
for different strengths of turbulence, L,/r,.
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Figure 2.6 The mean square value of the phase perturbations in the pupil are plotted
for different strengths of turbulence, L0 /r,.

Lo/ro = 125

Loro = 100
10, Lo/ro = 75

I--, Lo/ro = 50

1 0 500 10100 1500 200 25100 3000

L2
AL

Figure 2.7 The mean cross value of the phase and amplitude perturbations in the pupil
are plotted for different strengths of turbulence, Lo/ro.
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III. Phase, Amplitude, and Cross Power Spectral Densities of Weak Turbulence

Often it is convenient to represent the perturbations in the frequency domain to get a better

idea of the strength of turbulence and the perturbations at the pupil. The frequency domain

representations, the power spectral densities (psds), are developed from the correlations

introduced in the previous section. The psds are calculated by taking the Fourier transform

of the correlation functions [6]. The psds developed in this chapter will be used to create

random phase and amplitude field screens with the correct first and second order statistics

in the next chapter.

To begin, below are the phase, amplitude and cross correlation functions of the field

perturbations due to the refractive index perturbations that were developed in Eqs.(2.15),

(2.14), and (2.24) in the last chapter

raa(d) = 4k2 ir2 j I drdflKJo(rd)4(n) sin2 (a?), (3.1)

and

rvp(d) = 4k 27r2 j j d qdfr.Jo(rd) (r) cos2 (an), (3.2)

and

rap(d) = 2k2ir 2 j j dndq,•Jo(,d)D(K) sin(2aq), (3.3)

where a - .2k

The definitions of the Fourier Bessel transform and inverse transform are the follow-

ing [6]

F(p) = J{f(x)}

= j0 2-7rdxf(x)xJo(27rpx) (3.4)

and

f(x) = .-- l{F(p)j

= j 27rdpF(p)pJo(27rpx). (3.5)
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The Fourier Bessel transform is used to perform a Fourier transform of a function

represented in polar coordinates. If the correlations are represented in polar coordinates,

the Fourier Bessel transform definition above can be utilized to perform the Fourier trans-

form. After making a change in variables to polar coordinates, where n = 27rp, dn = 2-7rdp,

and a = (4r 2 
1 g 12 )/(2k), the correlation function for the amplitude can be written as the

following

r,,(d) = 4k 2 r2 j dq f 21rdpl(27rp, 77) sin 2(a?7)27rpJo(2lrpd)

= 8k2 r3 f dLr-1 f(27rp, n)sin2(afl) (3.6)

Utilizing the Wiener Khinchin theorem, the psd can be found by taking the Fourier

transform of the correlation function [6]. Performing the Fourier transform on the ampli-

tude correlation function above yields the following equation:

I aa(P) = Y'{rpp(d)}

= F {8k27r3 fL d.-' {1(., 7) sin2(an)} }
= 8k 2

7r
3 jL d&4j(27rp, 17) sin2 (aqn). (3.7)

After making the same change in variables as before, the phase correlation can be

written as the following

L 00

Fpp(d) = 4k 2
7r

2 j d1 .j 27rdp4(27rp,77) cos 2 (aq))27rpJo(27rp d)

= 8k 27r3jfodtlF- I{(D(27rp, 7)cos2 (a77)} (3.8)

where r. = 21rp and dK = 27rdp and now ax = (47r 2 1 - 12 )/(2k).
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Similarly, applying the Fourier transform to the phase correlation function above

yields the following equation for the phase psd

Ppp(p) = F{rpp(d)}

= F { 8k27r3 1 oL dqjF-' {I( P (rc) cos2(ao7)} }
= 8k'7r3 j di(27rp, 77) cos2 (aq). (3.9)

Similarly, the cross correlation function can be written as the following

Fap(d) = 2k27r2 f dnj 2irdp'I'(27rp,'q)sin(2a?7)2irpJo(27rpd)/0
= 4k 2 -7r3  di7.- 1 {(2-rp, 77) sin(2a?)}, (3.10)

where r = 27rp and dr = 27rdp and now a = (47r 2 I - 12)/(2k). As before, applying the

Fourier transform to the cross correlation function above yields the following equation for

the cross psd:

(Dap(p) = Y{rap(d)}

= Y {4k21r3 fL d?-7F P(27rp, 17) sin(2ac)}}

= 4k 27r3 j d?7(27rp, iq) sin(2a?7). (3.11)

In all of the psds derived above the 3-D psd for the refractive index perturbations is

P(r,77) = 0.033C.2(i))0o( (), (3.12)

where

K (3.13)
(K 2 ± 4r23)11/6
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Letting r. = 27rp in the above equation and approximating the exponential to one, yields

the following relationship

'1 o(p) = (27r)-/ 3  
(3.14)

(p2 7+ )11/6

We can use the relationship introduced in the previous section for constant C,2(ij) over the

propagation path to represent the 3-D psd for the refractive index perturbations as

1 (n, 7) = 0.033 (0.185K ) 5/8O(K). (3.15)
\to,

Therefore, the amplitude, phase, and cross power spectral densities become

•aa(p) = 8k07r3  d7•(27rp, 77) sin2 (a77)
L 2

= 8k 2 73(o.o33)-o(p) j0 d7C,2(77) sin2 (a77)

[2 (0.185 )5/3] J'o(P) [L 1 ~ in~)
=- 8k 7r (0.033) [--• (•S53 16p )- (1sin(2aL)]

= 16 r5 (0.033)(0185 30(P) 1 (1 pAL) sin(27rp2AL)] , (3.16)

and

-PP(p) 8k 2 ,r 3 jL dil7(27rp, 77) COS 2 (a7)

= 8k 2 r3 (0.033)(o(p) fo diC2(7) cos2(c?)

S8k7r
3 (0.033) [A_2 (0.185)5/3] o(P)[L + 1() sin(2aL)]

16i' 5 (0.033) ro('0.185) 5/3 1(P) [+ (2•'•AL)sin(27rp 2 AL)]' (3.17)

and

41,ap(P) = 4k 2 7r3 j d?7(2rp, 77) sin(2oai)

= 4k 2 ir3 (0.033)(o(p) fjL d77C(,q) sin(2c?)
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4A 4 2ir3(3) A (0.185)5/3] '1o(p) 1 ~(1 - cos(2aL))1

= 1ir(O03) 0.185) 1/3 1 A sin (7rp AL)] (3.18)
7r(003)( o 'o(P) i7rp 1 2 21

where a = (472 1 P12 )/(2k) and io(P) = (2,)-11/3
(P2+0)11/6

To present the psds more clearly a change of variables is performed. This change

of variables allows the psds to plotted versus the dimensionless quantity, p' = pL,. The

41o(p') can be represented as the following

(27r)-11/3 (.9

o0(p') - (L3. + 1 )11/6'

but we find it convenient to represent it as follows

()-11/3 2 5~/3
-'o(P)- (27r) 113LOLO' (3.20)

(p/2 + 1)11/6

Performing the change in variables results in the following relations for the amplitude,

phase, and cross psds

'Iaa(P') = 167r'(0.033)(0.185)5/3 (Lo0 )5/3 (27)-11/3

Sro I (p/2 + 1)11/6

x 1 (2rpAL) sin (2 ]AL), (3.21)

and

1pp(p') 167r5(0.033)(0.185)
5 / 3  ro) (p'2 + 1)11/6

x 1+ (2 AL) sin (27rp2AL) (3.22)

and

(Lo ) 5/3 (27r)-11/3
S 1o (p' 2 + 1)11/6

x[L. sin 2 (7p2AL) (3.23)
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Figure 3.1 shows the power spectral densities as a function of pL,. Notice how the

phase is much stronger than the amplitude for smaller spatial frequencies, but as pLo in-

creases the phase and amplitude contributions converge to the same relationship. Also,

notice how much quicker the phase psd and even the cross psd drops off as a function of fre-

quency than the amplitude psd. The wider psd of the amplitude perturbations corresponds

to higher spatial frequency content than the phase perturbations.

100 DPP(

10.

S(P )
10'

19 10.-8

-10-•

10-

10 20 30 40 50 80 70 80 90 100

pLo

Figure 3.1 The power spectral densities as a function of pLo for A/Lo - 5 x 10-8,
L/Lo = 10000, and Lo/ro = 100.

3-6



IV. Fourier Series Based Atmospheric Phase

and Amplitude Field Screen Generator

Simulations are often used to study the effects of atmospheric turbulence on imaging sys-

tems and laser propagation. In this chapter we use the power spectral densities calculated

in the previous chapter to develop phase and amplitude screens. Many screens only ac-

count for phase by performing a geometric optics phase calculation [2,4, 11, 12, 15] which

is appropriate when there is little far-field turbulence. When, however, the turbulence is

extended through the entire medium the field encounters phase and amplitude variation

due to diffraction effects. Using the proper ensemble statistics of the amplitude, phase,

and cross power spectral densities (psds) will allow for realistic simulations of extended

turbulence. These screens will simulate wavefront phase and amplitude perturbations in

the optical field induced by propagation through the turbulence.

Many methods have been developed to generate phase screens. The methods can

be broken into two mathematical approaches. The first approach uses a 2-Dimensional

rectangular grid of points to represent the statistics of the screen, sample based screen

representation. Whereas, in the second approach the screen is represented as a sum of

orthogonal basis functions or a modal based representation. The most common method

uses an approach based upon the Fourier transform. The technique is direct and compu-

tationally efficient due to the use of the Fast Fourier Transform (FFT). The problem with

this method is that the energy of low spatial frequencies (e.g., tilt) is under-represented.

The low spatial frequencies contain a large majority of the power which presents a major

problem when studying the effects of tilt. A model based approach allows for much better

low frequency representation [15].

The method used in this thesis follows Welsh's paper on Fourier series based phase

screen generation [15]. A modal representation is used to perform a Fourier Series (FS)

expansion of the wavefront phase and amplitude over a square area. This approach has

a much more accurate representation for low spatial frequencies than the sample based

approach [15]. Welsh's relationship for the phase screen generation is extended by using

the phase, amplitude, and cross psds developed in the previous chapter.
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4.1 The Development of the Random Screen

To begin, the complex phase in the pupil at the point F can be expressed as an

integral of the contributions of each layer along the path as in Eq. (2.11):

I= j L d?7d.A(Th 7)-(7'•) cos(,qa). (4.1)

Similarly, the complex amplitude perturbations in the pupil can be represented by the

following as in Eq. (2.10):

Pao() = J df7di-A(77, -)e3(*) sin(f0a). (4.2)

The amplitude, phase, and cross correlations were developed in Chapter 2 by com-

puting the following

raa(d) = (Pa(9)Pa( - dJ)), (4.3)

and

rpp (J) = (P,(i)Pp(g- d-), (4.4)

and

rap(d3 = (Pa(P)Pp(i- d3). (4.5)

where the angle brackets denote the expected value of the argument. The psds were

calculated by taking the Fourier transforms of the correlation functions.

The next step will be to generate random wavefront screens of amplitude and phase

with the proper statistics. The screen can be broken into a phase screen, x), and an

amplitude screen, A(9). The two can be combined into a phase and amplitude field screen

/() = (1 + A(1)seA). (4.6)

The area over which the optical field perturbations are being represented by the FS

is a square of dimension D.. The FS representation of the phase and amplitude will be

periodic in both the x and y-directions with period D,. The FS expansion of the phase

can be represented as:

0X) C, exp j27r (x+ }(7
n=-oo n'=--o0
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where co,, is the FS coefficient for the spatial frequency -=_ + LnD. The vectors

and ý are unit vectors in the x and y-directions, respectively, and x and y are the x and

y components of F. The coefficients co,, are chosen to be circular-complex Gaussian,

independent random variables having a mean square value given by

1'{In 1 ( (n, n) (4.8)

where E{.} denotes the expected value of the argument and d€O represents the phase psd.

We require Hermitian symmetry, cn,n, = C*_n,_n,. We also require the zero frequency term

to be a real, zero mean Gaussian random variable [15]. In Welsh's paper he used the geo-

metric phase psd in the above equation, but one could just as easily use the psds developed

for the phase and the amplitude perturbations. The FS expansion of the amplitude can be

represented in the same way by the following:

Ax)= exp j2r. nx'n (4.9)

n= c c ., xp, Dp

where cAn, is the FS coefficient for the spatial frequency f =137+ •-, Similarly, the

coefficients A,n, are also chosen to be circular-complex Gaussian, independent random

variables having a mean square value given by

A{1 ý AA ( = AA n (4.10)

and due to Hermitian symmetry, an,n, = C*n,_n,. The zero frequency term was also required

to be a real, zero mean Gaussian random variable [15].

We could simply use the amplitude and phase psds to calculate independent am-

plitude and phase effects, but since they are not independent we need to also take into

account their cross correlation. Therefore, we need to satisfy the following conditions:

E {I c ,I(, 12) , (4.11)

and

C-•,a Y2 (D1,A(n n (4.12)

and

E n T A , (4.13)
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To achieve these conditions we must satisfy all the elements in the correlation matrix,

R,.,,,, for the amplitude, phase, and cross correlations. The correlation matrix is defined

as

- [ 1'] E[cI, A ,12] ]
1 D 2 1 1 (4.14)

4PA nA , -L) -IAA ( n ,)n

To satisfy Eqs. (4.11), (4.12), and (4.13) consider

In~n gi 1 (4.15)

where CT is a 2 x 2 matrix and gj and 92 are complex zero mean unit variance independent

Gaussian random numbers. To form the CT matrix we need to decompose the correla-

tion matrix, Rn,n,,I so that the phase, amplitude and cross correlation are all satisfied.

The Cholesky decomposition is performed for this transformation, since Rc,,, is positive

definite:

Rc,,o = CTC. (4.16)

Performing the decomposition results in the following matrix

CT= 1 1 (4.17)

Notice what happens when Rcn, is computed:

Ren'n' = E [CT g[ [91 921* Cl
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= CTE g[11 [91 92]* C

92

= cT 1 0 C

0 1 1
= cTc = RC.],. (4.18)

Therefore, we can determine what random numbers to use for the screen by using

Eq. (4.15) and Eq. (4.17):

C~1 ____,IAA __ (4.19)

1l L + 92__91;AA +9

Notice how cA, , approaches 92 /VI-AA when the cross correlation approaches zero which is

the desired result. Also, the phase term is not affected by the cross correlation.

Welsh approximates the phase by truncating the FS expansion in Eq.. (4.7) to a finite

number of terms. The truncated expansion becomes [15]

N -1 N - c , exp j 2 r( nx 2ty 1 )
n=-(N-1) n'=-(N-1) - Lp /

- E E cn/ exp j 27r ( +x] (4.20)ý--1 n'--(N1 D + D, p

This relationship is also valid for the amplitude, A(s), by replacing cO,n, with cn,n,

4.2 Method for Screen Generation

Equation (4.20) can be expressed in matrix algebra notation, allowing for simple

implementation on mathematical software packages. In order to represent the equation in

matrix algebra form, the phase screen is evaluated on a M x M square grid of dimension D,

where D could be considered the diameter of the optical system pupil. In most instances
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D, will be much larger than D. The matrix formulation uses the following vectors in the

representation of the phase and amplitude;

x column vector of length M (x-coordinates for the grid points),

y column vector of length M (y-coordinates for the grid points),

f column vector of length N (spatial frequency with nth entry being [n - 1]lDp),

1 column vector of ones of length M [15].

Since the atmospheric turbulence is extended over the entire propagation path at

constant strength of turbulence, the amplitude and phase screens can be combined and

collapsed into one screen at the pupil. The phase and amplitude can be represented as [15]

O(xlT_ + jyTg) = 2Re {[exp{j2irfx T}]

x (C4[expj27rfyT] + C¢[exp--j2lrfyT])}, (4.21)

and

A(xiTr + lTyr) = 2Re {[exp{j2irfx T}]

x (CP[expj21rfyT] + C}A[exp -j21rfyT]) ,(4.22)

where CO and CO are N x N matrices containing the complex random variables cO , and

CA and CA are N x N matrices containing the complex random variables cAn,.

4.3 Field Screen Generation Procedure

The psds developed in Chapter 3 for weak turbulence will be utilized to generate the

random wavefront phase from Eq. (4.21) and the random amplitude perturbation from

Eq. (4.22). The following considerations and steps are required to represent the phase and

amplitude effectively.

4.3.1 Set-up:
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1. FS period, DO, DA DC must be larger than the non-negligible support of , raa,

and rap, respectively. If Dp is not selected large enough, the periodic effects of Dp

could occur in the structure function for the large screen case.

2. N must be chosen so that the power encompassed in the simulated field sufficiently

represents the power in the random processes O(•) and A(s). This can be determined

by considering the ratio of the power in ý(:) to the power in O(•) and the ratio of

AV() to the power in A(9). The power ratios are given by

[I 1 f-N/DP -N/D

]_f�___d•_( p-N (4.23)

for the phase,

12] rN/A fN/DA

E[IA( f ',/-AN/DP f-N'DA dAA(P-)
L/P /P (4.24)

E [IA(:5)I2] = f2 '. d#1AA(P)
for the amplitude, and

f- NDCf'N~ A OP (4.25)E [A(g)(:G)] ff. ff. dfAAO(P-)(

for the cross term. The value of N/Dp is chosen to accurately represent the wave-

front's phase, amplitude, and cross statistics.

3. For correlated phase and amplitude screens Dp as well as N must be the same for
the amplitude, phase, and cross statistics (i.e., Dp = DO€ = DA = Dc) to properly

represent the cross statistics.

4. M must be chosen to be large enough to sufficiently sample the perturbations in the

aperture of dimension, D.

4.3.2 Screen Generation:

1. The correlated phase and amplitude screens will be calculated by filling the matrices

CL, , CA, and CA with circularly complex Gaussian random variables where

[gl]i,i, [g2]i,i', [g3]i,i', and [g4]j'j, are complex zero mean unit variance independent
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Gaussian random numbers. The i, i'th elements of the matrices will contain the

following:

1 • i-1 V(4.26)i'-

-1 [l'i' _

+(- ['.--• 'D ( Dp ) T (4.28)

A 1 [1-il (4.27)

[c],,= 5-; I•a21.,,,'°

S i __1 V1_i' 2•,0, N1-'•, :i'-1)•
+ [31jj,'P--AD- Dp (4.28)

where the multiplicative terms represent the standard deviation of the random num-

bers, [gi],,i,, [g2]I,i,, [g3]h,i,, and [g4]i~i,.

2. Replace the complex random values of the first row and column of C€~ and C A with

zeros.

3. Compute the random screen, t7(•), by evaluating Eq. (4.21) for the phase and Eq.

(4.22) for the amplitude with the resulting screen having the following form:

t(•) = (1+ Ai(•)) d••) (4.30)

4. For subsequent independent screen realizations go to step 1 under subsection 4.3.2

and repeat steps 1 through 3.
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4.4 Numerical Results

In this section the specific psds calculated in Chapter 3 and Eqs. (4.21) and (4.22)

will be used to generate phase and amplitude screen realizations. These psds are valid for

"a plane wave using a constant strength of turbulence profile. Monte Carlo experiments for

"a variety of conditions are performed to show that Eqs. (4.21) and (4.22) generate screens

with the correct spatial statistics.

4.4.1 Weak Turbulence Atmospheric Statistics. Since multiples of the frequency

1/Dp are used in the FS expansion it is convenient to include Dp in the psds. Therefore

from Eqs. (3.16), (3.17), and (3.18) developed in the previous chapter the psds become

5/3 n2 (2,)"/
'DAA(P) 167r (0.033)(0.185) P/0/+()) 11/6

X - ( 1r~L sin(27r p2 UL)]

0.01149 rD DPI 1- 21 sin(27rp2AL) (4.31)
2D2 + (D)2 211/6 [ (2p2AL

and

(DOO•p = 167r5 (0.033),(o.185)• •)/ ) 5 / -

(p2D2 + D) 2)11/6

x [l + (2AL) sin(27rp 2 UL)]

=0.01149 (r)5/3 D1 + ,i(7r L (4.32)
( pD2 + (D2, )' 2) 11/6[ (2rpAL)
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and

(D) D,2(2-7r) - 1"/

4)AOk(P) = 167r5 (0.033)(0.185) 1/3 (r) s z -1/ ipA '(7rp 2 AL)]
(2DP2 + () 2) 11/6

= 0.01(149 r / P 1 sin2 (/rp2AL) (4.33)

(2 D2 + ( P) 2) 11/6 [i7rp2AL

4.4.2 Setup for independent uncorrelated phase and amplitude screen generation:

Steps 1 and 2. From steps 1 and 2 outlined in subsection 4.3.1 the FS period, Dp,

and the number of FS coefficients N must be selected for the phase and amplitude. For

uncorrelated screen generation the cross psd, DA¢, in Eqs. (4.28) and (4.29) will be set

to zero. Since the amplitude and phase will be uncorrelated, N and Dp can be selected

separately to best represent the phase and amplitude perturbations. From Fig. 2.3 it

appears that a value of D¢O > 4L, will be adequate for the phase. For numerical results

shown here we set DO = 4L,. Using Eq. (4.23) we determine that N > 15DO/Lo is required

to capture 99% of the power in the phase. Since we chose DO = 4Lo at least N = 60 FS
P

coefficients are required.

Considering the amplitude, from Fig. 2.2 it appears that a value of DA > Lo/4 will

be adequate for the amplitude. For numerical results shown here we set DA = L,/4. Using

Eq. (4.24) we determine that N > 720DA /L, is required to capture 99% of the power in

the amplitude. Since we chose DA = L,/4 at least N = 180 FS coefficients are required.

We also need to consider sample spacing of the screens. In these numerical results

we chose N = 1DO/ro for the phase statistics. In the following results we chose a strength

of turbulence, Lo/ro = 100 which for the phase implies that N = (3/4)(DO/Lo)(Ln/ro) =

-.4.100 = 300. This value of N will also satisfy the power requirements for the amplitude

using the D 4A / L,14.

4.4.3 Simulation results for independent uncorrelated amplitude and phase screen

generation. Ten thousand random screens were generated in a Monte Carlo experiment
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by following steps 1-4 of subsection 4.3.2. Each screen was generated on a square grid with

a screen dimension of D = 100r, or D = !DO for the phase. The large screen case allowed

us to compare the simulated spatial amplitude and phase psds to the theoretical psds. We

chose an M x M grid for the screen of 2D/rt x 2D/rt. The ensemble based wavefront

phase was computed to be 187.61 square radians, which compares with the theoretical

mean square value (msv) of 186.57 square radians and the amplitude was computed to be

0.0877 which compares to the theoretical msv of 0.0879.

Next, a screen of dimension D = 10r, is considered. This time one thousand screens

were generated for use in calculating the structure functions. An M x M grid for the

field screen of 4D/ro x 4D/ro was chosen. Figure 4.1 shows the phase structure function

calculated for the ensemble of random screens along with the theoretical structure function

computed from Eq. (2.38). Figure 4.2 shows the calculated amplitude structure function

and the theoretical function computed from Eq. (2.37). The ensemble based and the

theoretical structure functions match extremely well. Also, notice how the amplitude

structure function away from the center of the screen approaches twice the mean square

value of the amplitude perturbations calculated in the previous paragraph.

Figures 4.3 and 4.4 show the phase and amplitude structure functions results for a

larger screen dimension of D = 40r.. As before the ensemble based and the theoretical

structure functions match extremely well.

Finally, the amplitude and phase structure functions are calculated for a very large

screen dimension of D = 100r,. For this case, DA/Lo for the amplitude must be selected

as DA/LO > 5/8 in order to keep the periodic nature of DA from corrupting the structure

function. The phase structure function is in Fig. 4.5 and matches very well with the

theoretical function. If N = 300 is selected, the amplitude psd will be under-represented,

since N > 720DpA/L, will no longer be satisified. Therefore, if we let N = 450, over 99 %

of the power in the amplitude psd will be captured. Figure 4.6 shows that the resulting

amplitude structure function is slightly under represented but within 1% of the theoretical

plot.
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Figure 4.1 Theoretical and simulated phase structure function, Dpp(d- plotted versus
Id/Lo for a von Karman turbulence power spectrum with DO/Lo = 4,
D0/ro = 400, L/Lo = 1000, and A/L. = 5 x 10-8. The screen dimension is
D = 10r, and the number of FS coefficients is N = 300.
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Figure 4.2 Theoretical and simulated amplitude structure function, Daa(d) plotted ver-
sus JdJIL 0 for a von Karman turbulence power spectrum with DA/Lo = 1/4,
DA/ro = 25, LILO = 1000, and A/Lo = 5 x 10-8. The screen dimension is
D = 10r, and the number of FS coefficients is N = 300.
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Figure 4.3 Theoretical and simulated phase structure function, Dpp(d), plotted ver-

sus l/ILo for a von Karman turbulence power spectrum with DO/Lo = 4,

D01ro = 400, L/Lo = 1000, and A/Lo = 5 x 10-8. The screen dimension is
D = 40rt and the number of FS coefficients is N = 300.
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Figure 4.4 Theoretical and simulated amplitude structure function, Daa (d), plotted ver-

sus I ILo for a von Karman turbulence power spectrum with DA/Lo = 1/4,

DA/ro = 25, LILo = 1000, and A/Lo = 5 x 10-8. The screen dimension is

D = 40ro and the number of FS coefficients is N = 300.
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Figure 4.5 Theoretical and simulated phase structure function, Dpp(d-, plotted ver-
sus I/ILo for a von Karman turbulence power spectrum with DT/Lo = 4,
DO/ro = 400, L/Lo = 1000, and A/Lo = 5 x 10-8. The screen dimension is
D = 100ro and the number of FS coefficients is N = 300.
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Figure 4.6 Theoretical and simulated amplitude structure function, Daa(d-, plotted ver-
sus I /Lo for a von Karman turbulence power spectrum with DA/Lo = 5/8,
DA/ro = 62.5, LILO = 1000, and A/L. = 5 x 10-8. The screen dimension is
D = 100ro and the number of FS coefficients is N = 450.
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4.4.4 Setup for independent correlated phase and amplitude screen generation:

Steps 1, 2, and 3. From steps 1 and 2 outlined in subsection 4.3.1 the FS period, Dp,

and the number of FS coefficients N must be selected for the phase, amplitude, and cross

psds. Correlated phase and amplitude screen generation requires the same values for Dp

and N. From subsection 4.4.2 it is apparent that the amplitude and phase requirements

for Dp and N are not the same. First Dp must be selected, since it must be chosen large

enough to represent the amplitude, phase, and cross statistics sufficiently. In considering

the cross statistics, from Fig. 2.4 it appears that a value of Dp > L, will be adequate

for the cross correlation. From Eq. (4.25) N > 10ODp/Lo is determined to be required

to capture 99% of the power in the cross statistics. In order to sufficiently represent the

phase, amplitude, and cross statistics Dp = 1.5 is chosen. To capture 99% of the power in

the amplitude, N > 720Dp/L, must be satisfied, requiring N > 1080. This requirement

is much higher than the practical limits of the computation speed, especially given the

number of iterations in the Monte Carlo experiments. N = 400 FS coefficients was chosen

which resulted in a representation of over 99% in the phase and cross statistics and 92.3%

for the amplitude.

4.4.5 Simulation results for independent correlated amplitude and phase screen

generation. Ten thousand random screens were generated in a Monte Carlo experiment

by following steps 1-4 of subsection 4.3.2. Each screen was generated on a square grid with a

screen dimension of D = 100r,. The large screen case allowed us to compare the simulated

spatial amplitude, phase, and cross psds to the theoretical psds. As before, we chose an

M x M grid for the screen of 2D/ro x 2D/ro. Using Dp = 1.5 and N = 400 determined in the

previous section the ensemble based phase, amplitude and cross values were determined.

The ensemble based wavefront phase was computed to be 185.41 square radians, which

compares with the theoretical mean square value (msv) of 186.57 square radians and the

amplitude was computed to be 0.0812 which compares to the theoretical msv of 0.0879. The

ensemble based mean cross value of the amplitude and phase perturbations was computed

to be 0.2416 which compares with the theoretical value of 0.2418.
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Next a screen of dimension D = 10r, is considered. Ten thousand screens are

generated to calculate the structure functions. Again, an M x M grid for the field of

4D/r. x 4D/rt is selected. Figure 4.7 shows the phase structure function calculated for

the ensemble of random screens along with the theoretical structure function computed

from Eq. (2.38). Figure 4.8 shows the calculated amplitude structure function and the

theoretical function computed from Eq. (2.37). Figure 4.9 shows the calculated cross

structure function and the theoretical function computed from Eq. (2.39). The ensem-

ble based and the theoretical structure functions match extremely well for the phase and

cross, but, as expected, the simulated amplitude structure function drops slightly below

the theoretical plot.
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Figure 4.7 Theoretical and simulated phase structure function, Dpp(d', plotted versus

Id /Lo for a von Karman turbulence power spectrum with Dp/Lo = 1.5,
Dp/r0 = 150, LILO = 1000, and A/L. = 5 x 10-8. The screen dimension is
D = 10r, and the number of FS coefficients is N = 400. The phase screens
used in this calculation were correlated with the amplitude screens by the
cross correlation.

Figures 4.10, 4.11, 4.12 show the phase, amplitude, and cross structure functions

results for the very large screen dimension of D = 100r.. As before, the ensemble based

and the theoretical structure functions match extremely well for the phase and cross, but

the ensemble based amplitude structure function drops slightly below the theoretical.
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Figure 4.8 Theoretical and simulated amplitude structure function, Daa(d-, plotted ver-
sus Idk/Lo for a von Karman turbulence power spectrum with Dp/Lo = 1.5,
Dp/ro = 150, LILO = 1000, and A/Lo = 5 x 10-8. The screen dimension
is D = 10ro and the number of FS coefficients is N = 400. The amplitude
screens used in this calculation were correlated with the phase screens by the
cross correlation.
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Figure 4.9 Theoretical and simulated cross structure function, Dap(d), plotted versus

Id /Lo for a von Karman turbulence power spectrum with D,/Lo = 1.5,
Dp/ro = 150, L/Lo = 1000, and A/Lo = 5 x 10-8. The screen dimension is
D = 10ro and the number of FS coefficients is N = 400.
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Figure 4.10 Theoretical and simulated phase structure function, DVV(d), plotted versus

I /Lo for a von Karman turbulence power spectrum with Dp/LO = 1.5,
DV/ro = 150, L/Lo = 1000, and A/Lo = 5 x 10-8. The screen dimension is
D = 100ro and the number of FS coefficients is N = 400. The phase screens
used in this calculation were correlated with the amplitude screens by the
cross correlation.
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Figure 4.11 Theoretical and simulated amplitude structure function, Daa (d), plotted
versus I]/Lo for a von Karman turbulence power spectrum with Dp/LO =
1.5, Dp/ro = 150, L/Lo = 1000, and A/Lo = 5 x 10-8. The screen dimension
is D = 100ro and the number of FS coefficients is N = 400. The amplitude
screens used in this calculation were correlated with the phase screens by
the cross correlation.

4-18



0.45-

0.4

0.35

Simulation

0.15

0.1

0.05

$5 -0.4 -0*3 -02 -0', 0 01 o 0.2 O R, 0.5

Lo

Figure 4.12 Theoretical and simulated cross structure function, Dap(d-, plotted versus

I I/L, for a von Karman turbulence power spectrum with Dp/Lo = 1.5,
Dp/ro = 150, L/Lo = 1000, and A/Lo = 5 x 10-8. The screen dimension is
D = 100ro and the number of FS coefficients is N = 400.
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Figure 4.13 shows a random phase screen of dimension D = 10r, and Fig. 4.14

shows the correlated random amplitude screen. Notice how much larger the phase screen

magnitude is than the amplitude screen. Figs. 2.5 and 2.6 from Chapter 2 illustrated the

mean square value of the amplitude perturbations will get larger and the phase will get

smaller as L decreases for constant Lo/ro. Therefore, if L/LO or A/Lo were larger the

magnitude of the amplitude perturbations would be higher and the magnitude of the phase

perturbations would be lower. It is also evident that the amplitude perturbations have a

higher spatial frequency content than the phase perturbations which can be predicted from

the power spectral density plot in Fig. 3.1.
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Figure 4.13 Random phase screen, ý(d'), plotted versus Id /Lo for a von Karman tur-
bulence power spectrum with Dp/LO = 4, Dplro = 400, LILo = 1000, and
A/Lo = 5 × 10-8. The screen dimension is D = 10to and the number of FS
coefficients is N = 300.
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Figure 4.14 Random amplitude screen, A(d), plotted versus II/L, for a von Karman
turbulence power spectrum with Dp/Lo = 1/4, Dp/ro = 25, L/Lo = 1000,
and A/L, = 5 x 10-8. The screen dimension is D = 10r, and the number
of FS coefficients is N = 300.
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V. Amplitude Effects on Full Aperture Tilt Sensing

The random tilt over the aperture of an imaging system has the effect of moving an image

around in the image plane of an optical system. Long exposure images will effectively

average this movement over a long period of time blurring the image and reducing the

resolution similar to a convolution operation. A short exposure image essentially freezes

the random tilt allowing for much higher resolution. The tip-tilt mirror corrects the overall

mean tilt over the aperture of the wavefront, significantly reducing the movement of the

image in the image plane. It is simply a flat mirror that can be adjusted in two orthogonal

directions. Adaptive optics systems began with a tilt correction system since the random

tilt contains 87% of the power of the wavefront phase fluctuations. In modern adaptive

optics systems the tip-tilt mirror stage separately removes the random tilt in a wavefront

reducing the dynamic range requirements in the flexible or faceted deformable mirror.

Refer back to Fig. 1.1 for a simplified adaptive optics system schematic. Dynamic range

refers to the deflection magnitude of each actuator or facet of the mirror required to correct

the higher order phase errors [12].

5.1 Full aperture tilt estimation using image centroid

There are a number of algorithms and systems used to measure the overall tilt of

the wavefront in the aperture. One such measurement tracks the movement of the image

centroid in the focal plane of a full aperture lens. Figure 5.1 illustrates the fundamental

structure of the centroid tracker.

When the centroid of the image is located in the center of the focal plane the overall

tilt of the phase perturbations in the aperture is zero. Using the Fourier transforming

property of a lens the image intensity, I(u, v), can be determined from the optical field,

E(x, y), by the following:

I (ku, v r {E(x, y)} I {E(x, y)} * (5.1)

where Y is the Fourier transform operator, A is the average wavelength of the light, f is

the focal length of the imaging lens, (x, y) are the coordinates in the object plane, and

(u, v) are the coordinates in the focal plane [7].
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Figure 5.1 Simplified configuration of a full aperture tilt centroid tracker. (Cx, Cy) is
the location of the image centroid and f is the focal length of the lens.

The centroid of the image can be determined by performing a discrete first moment

calculation to determine the x and y locations of the centroid:

k

IX= i=1 (5.2)k
ZMi

and

k

(5.3)

i--I

where Mi is the relative irradiance on each element of the detector in the focal plane and

(xi, yi) are the locations of each element. (I., Iy) represents the discrete location of the

image centroid on the detector.

Simulations will be run to determine the image in the focal plane by evaluating Eq.

(5.1) and using the FFT to compute the Fourier transform of the wavefront. The centroid

of the image will be determined and related to the slope of the wavefront in the aperture

of the system from the relationships in Eqs. (5.1), (5.2), and (5.3). Since the FFT will be

implemented, a relation between the sample size in the aperture to the sample size of the

focal plane detector is required. For a m x m matrix used in the computation of the image
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the following relationships relate the Fourier frequency sample size to the sample size in

the space domain:

1
A -= 1 (5.4)

MAX

and

Af = 1 (5.5)

MAY

where Afx and Afy are the sample size in the Fourier domain and Ax and Ay are the

sample size in the space domain [5]. Now, using Eq. (5.1) one can determine the sample

size in the image plane

AU = A (5.6)

and

Av = A' (5.7)

where Au and Av are sample size in the focal or detector plane. From Eqs. (5.2) and

(5.3) one can determine the actual location of the centroid by computing Cx = IxAu and

Cy = IXAv.

Now, consider how the centroid location in the focal plane is related to the wavefront

slope over the aperture. From Fig. 5.1 the location of the image centroid, (Cx, Cy), is

related to the orthogonal components of the wavefront slope g by

kC 2-irC (5.8)

f Af
and

sy = k - 2irC (5.9)

where (sx, sy) represents the x- and y-directed components of the vector S' [12]. Expressing

the discrete representation of the centroid the wavefront slope can be simplified by

27rIxAu 2irIx Af
Sx = Af = Af mAx

-- ma~ x (5.10)

MAX
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and

27rI.Av = 27rIy Af
= Af =Af mAy

_ 2iry (5.11)
MAY"

Recall that m x m is the dimension of the matrix in the FFT calculation.

5.1.1 Tilt estimation calculation using random screens. The random phase and

amplitude screen generator outlined in Chapter 4 will be used to determine the effect

the amplitude perturbations have on the wavefront slope estimation, (s", sy). The random

screen consists of a M x M matrix of dimension, D. Therefore, Ax = DIM and Ay = DIM

and (sx, sy) becomes

2sx (5.12)

and

S27ry (5.13)

Using Eqs. (5.6) and (5.7) one can determine the size of the FFT matrix that must

be used to determine the image in the focal plane given the particular sample size of the

detector, Au and the optical parameters A, f, and D. Solving for m, Eq. (5.6) becomes

A!f AfM _ Af#M (5.14)
m-= AxAu- DAu- Au (

where Au = Av, Ax = Ay, and f# = f/D is the f-number of the lens.

5.2 Simulations using the random screen generator with uncorrelated amplitude and

phase screens

The screen generator will be used to investigate how the amplitude perturbations

affect the tilt calculation. The mean square error in the tilt calculation will be determined

for an ensemble of square screens. The estimated tilt will be subtracted from the phase

screens to determine how well the algorithm performs for different situations.
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Turbulence and Optical Parameters

Range
Parameter low high Default

Propagation length over outer scale, L/LO. 1000-50,000 10,000
Strength of turbulence, Lo/ro. 50-500 200
Wavelength over outer scale, A/Lo. 1.0 x 10--1.0 x 10-7 5.0 x 10-8

Diameter over Fried parameter, D/ro. 2-100 10

Table 5.1 Atmospheric turbulence and optical parameters used in simulations.

The amplitude and phase screens used in these simulations are uncorrelated. Section

5.3 provides justification for using the uncorrelated screens over the correlated screens.

The following parameters D/ro, LILO, Lo/ro, and A/Lo as shown in Table 5.1 will

be studied to determine their effect on the tilt estimation. Square screens of width, D, will

be used to simulate atmospheric turbulence over a square aperture. As each parameter is

varied, all other parameters will remain constant. Since many of the parameters are inter-

related, care must be taken in the analysis of the results. For instance, normally decreasing

L/Lo will result in less turbulence effects. Since D/ro is proportional to the integrated

turbulence profile and held constant, decreasing L/Lo had the effect of simulating shorter

but more concentrated turbulence strength profiles.

5.2.1 Mean square error in the tilt estimation. The estimated tilt will be cal-

culated for each random screen, the square error in the estimation determined for each

realization, and the mean calculated for the entire ensemble. The mean square error in the

tilt estimation can be defined as

Tmse ((mX - sx)2 + (ty - s)2) (5.15)

2

where tx and t. are the x- and y-directed components of the actual tilt and the angle

brackets represent the ensemble average operation. The Tmse for a random amplitude and

phase screen will be compared with the error in the tilt estimation using a phase only

screen. The components of the actual tilt, tx and t., are calculated by taking the average

slope over the phase screen. The mean square tilt of the phase screens is defined as

TM= 2 (5.16)
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The standard deviation of the mean for the Monte Carlo experiments can be deter-

mined by

=_ $(5.17)

VN -
where a is the actual standard deviation of the population, s is the standard deviation of

the sample, and N is the number of iterations in the simulation [1]. Using Eq. (5.17),

an experiment of 1200 random screens or iterations was determined to be sufficient in the

Monte Carlo calculations of the tilt. The standard deviation in the mean for Tme was

approximately 1/35th of the mean.

In the Monte Carlo experiments the following calculations with performed for each

iteration. First, the actual tilt is calculated from the phase screen. Then, the full aperture

tilt estimation algorithm is performed using Eqs. (5.12) and (5.13) on the optical field

screen consisting of the phase and amplitude perturbations. Next, we use Eqs. (5.12) and

(5.13) again, but this time we include only the phase perturbations in the screen. Finally,

the mean square error in the tilt, Tmse, is calculated for the phase only screen and the phase

and amplitude screen using Eq. (5.15). The difference between the Tmae's represents the

effect the amplitude perturbations have on the tilt estimation. The mean square tilt, Tins,

and Tmse are presented in the plots in radians2 per number of ro squared (or rad2/rLd 2).
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In the first case, the propagation length over outer scale, L/Lo, was varied. The

mean square error in the tilt estimation, Tins,, is plotted in Fig. 5.2 for both cases.

Normally as the propagation path lengthens the turbulence effects become more severe,

but since D/ro and Lo/ro are held constant, only the proportion of the amplitude to

the phase perturbations changes. Figs. 2.5 and 2.6 from Chapter 2 show that the mean

square value of the amplitude increases with L/Lo and the mean square value of the phase

decreases when all other factors are held constant. Therefore as L/Lo gets larger, the

larger amplitude perturbations cause the Tmse for the phase and amplitude screen case

to increase. Whereas, the phase only Tmse decreases as L/Lo increases due to the slight

decrease in phase perturbations. In addition, as these phase perturbations decrease with

smaller L/Lo the mean square tilt, Tins, decreases as expected.

1.6 , , , , ,

1.4 -

1.2

S0.8-
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0.4- Tmae Phase only
0.4

0.2

L xl,
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Figure 5.2 The mean square error in the tilt estimation, Tmse, and the mean square
tilt, Tins, are plotted versus LILO for D/ro = 10, Lo/ro = 200, and A/Lo =
5.0 x 10-'. The Tmse is calculated twice, once using the phase and amplitude
screen case and once for the phase screen only case. The Tins is calculated
by computing the average slope of the phase over the screen.
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Next the strength of turbulence, Lo/ro, was varied and the Tmn, and Tmse were calcu-

lated again. The mean square error for both cases and the mean square tilt are shown in

Fig. 5.3. As Lo/ro increases and D/ro is held constant the lower order phase perturbations

(e.g., tilt) increase while the higher order perturbations decrease. The upward trend in

the tilt, Tins, is due to larger outer scales, L,, contributing to higher tilt in the wavefront,

but flatter smoother variations. The mean square value of the amplitude perturbations

increase with the strength of turbulence as shown in Fig. 2.6. This increase in ampli-

tude effects causes greater error in the tilt estimate for the phase and amplitude screen.

Whereas, Tmse for the phase only case decreases as Lo/ro increases, since the tilt estimator

performs better for flatter phase screens.
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•0.6\
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Figure 5.3 The mean square error in the tilt estimation, Tmse, and the mean square tilt,
Tins, are plotted versus Lo/ro for D/ro = 10, L/Lo = 10000, and A/Lo =
5.0 X 10-8. The Tmse is calculated twice, once using the phase and amplitude
screen case and once for the phase screen only case. The Tins is calculated
by computing the average slope of the phase over the screen.
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Next, the tilt estimation is investigated for changes in A/Lo in Fig. 5.4. Similar

to L/Lo, Figs. 2.5 and 2.6 from Chapter 2 also show that the mean square value of the

amplitude increases with A/Lo and the mean square value of the phase decreases when

the other factors are held constant. As A/Lo gets larger, Tmse for the phase/amplitude

case increases due to the larger amplitude perturbations. Whereas, the phase only Tmae

decreases slightly as A/Lo increases due to the decrease in phase perturbations. In addition,

as these phase perturbations decrease the mean square tilt, Tins, decreases slightly as

expected.
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Figure 5.4 The mean square error in the tilt estimation, Tmse, and the mean square tilt,
Tins, are plotted versus A/Lo for D/ro = 10, L/Lo = 10000, and Lo/ro = 200.
The Tmse is calculated twice, once using the phase and amplitude screen case
and once for the phase screen only case. The Tins is calculated by computing
the average slope of the phase over the screen.
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Finally, the tilt estimation is investigated for changes in D/ro in Fig. 5.5. Since

LILo, Lo/ro, and A/Lo are held constant the strength and nature of the phase and ampli-

tude perturbations remain relatively constant over a fixed area. Over very large apertures

the phase tilt is very small, but as the aperture size decreases the mean square tilt, Tins,

increases. Therefore, as D/tr gets larger, the tilt over the entire aperture decreases signif-

icantly. The error, Tmse, decreases for both cases as Tin, decreases.

10,

"C' T,,Tse Phase only

10- Tmae Phase/Amplitude

1 -2 I I I I

0 10 20 30 40 50 60 70 80 90 100

D
ro

Figure 5.5 The mean square error in the tilt estimation, Tmse, and the mean square
tilt, Tins, are plotted versus D/ro for A/Lo = 5.0 X 10-8, L/Lo = 10000,
and Lo/ro = 200. The Tmse is calculated twice, once using the phase and
amplitude screen case and once for the phase screen only case. The TY8 is
calculated by computing the average slope of the phase over the screen.
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5.2.2 Strehl ratio calculation. The Strehl ratio will be calculated before and

after removing the tilt in the screen for the ensemble of random screens. The ensemble of

screens will be generated in a Monte Carlo experiment. The point spread function is the

image-plane intensity distribution resulting from imaging a point source [12]. The point

spread function (psf) can be represented as

s(u,v) = I(u,v)*6(0,0)

= I(u, v), (5.18)

where 6(0, 0) is the Dirac delta function and * is the convolution operator. The psf will

be calculated for each screen and averaged over the ensemble to simulate a long exposure

image. Each corrected screen will be determined by subtracting the estimated tilt from

the phase screen. The Strehl ratio is defined as the ratio of maximums between the actual

psf and the diffraction limited psf. The Strehl ratio will be calculated for four different

cases:

1. The actual tilt, t, and ty, will be determined by taking the average slope over the

entire phase screen. The actual tilt will be subtracted from the phase screen and

the Strehl ratio, SRUT, will be calculated for the ensemble average psf of the cor-

rected phase and original amplitude screens. The subscript, UT, refers to the screens

"untilted" by the actual tilt.

2. The estimated tilt, sx and sy, will be determined from Eqs. (5.1), (5.12), and (5.13)

by using the centroid of the phase screen only image. The estimated tilt will be

subtracted from the phase screen and the Strehl ratio, SRUTP, will be calculated for

the ensemble average psf of the corrected phase and the original amplitude screens.

The subscript, UTP, refers to the screens "untilted" by the estimated tilt from the

phase screen image centroid.

3. The estimated tilt, s. and s., will be determined from Eqs. (5.1), (5.12), and (5.13)

by using the centroid of the phase and amplitude screen image. The estimated

tilt will be subtracted from the phase screen and the Strehl ratio, SRUTAP, will
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be calculated for the ensemble average psf of the corrected phase and the original

amplitude screens. The subscript, UTAP, refers to the screens "untilted" by the

estimated tilt from the amplitude/phase screen image centroid.

4. The Strehl ratio, SR, will be calculated for the uncorrected phase screen using the

ensemble average psf of the combined phase and amplitude screens.

Strehl ratio calculations 1 through 3 will have the effect of decreasing the movement of

the image in the focal plane. Whereas, the uncorrected phase screen case of calculation

4 above will be averaged over a wider range of image motion. The corrected screen with

the least amount of image motion over the ensemble will result in the highest Strehl ratio.

Figure 5.6 shows a block diagram of the four different Strehl ratio calculations performed.
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Figure 5.6 Block diagram of Strehl ratio calculation procedure. Random screens are

generated by following the Screen Generation procedure in See. 4.3.2. Strehl

ratios SRuT, SRUTP, and SRUTAp are for screens compensated by the actual

tilt, estimated tilt using phase screen image centroid, and estimated tilt using

phase/amplitude screen image centroid, respectively. The fourth Strehl ratio,

SR, is calculated for the random uncompensated phase/amplitude screen.
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Figure 5.7 shows the point spread function of the diffraction limited unaberated

screen. The uncorrected random screen's psf for the short exposure image is shown in

Fig. 5.8. The simulations were run by performing a Monte Carlo experiment to generate

random screens. By taking the ensemble mean of the psf's of each screen the long exposure

point spread functions were determined. The uncorrected long exposure psf is shown in

Fig. 5.9 (case 4 in Fig. 5.6). The long exposure psf for the screens compensated by the

phase only image centroid estimated tilt is shown in Fig. 5.10 (case 2 in Fig. 5.6). The

long exposure psf for the screens compensated by the actual tilt is shown in Fig. 5.11 (case

1 in Fig. 5.6). The long exposure psf for the screens compensated by the phase/amplitude

image centroid estimated tilt is shown in Fig. 5.12 (case 3 in Fig. 5.6). Notice how the

uncorrected long exposure psf is shorter and wider than that of the corrected screens.

Also, notice how the screen compensated by using the phase/amplitude centroid estimate

is higher and narrower than the screens compensated by the actual average tilt and the

phase centroid estimate.
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Figure 5.7 Point spread function of the diffraction limited unaberated screen.
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Figure 5.8 Point spread function (psf) of the uncorrected random screen for the short
exposure image for the following parameters L/Lo = 50,000, D/ro = 10,
Lo/ro = 200, and A/Lo = 5.0 x 10-8.
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Figure 5.9 Point spread function (psf) of the uncorrected random screen for the long
exposure image for the following parameters L/LO = 50,000, D/to = 10,
Lo/ro = 200, and A/LL = 5.0 x 10-8.
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Figure 5.11 Point spread function (psf) of the corrected random screen using the actual
average tilt for the long exposure image for the following parameters L/L 0

50,000, D~r0 = 10, Lo/ro = 200, and A/Lo = 5.0 x 10-8.
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Figure 5.12 Point spread function (psf) of the corrected random screen using the image

centroid of the phase/amplitude screen for the long exposure image for the
following parameters L/Lo = 50, 000, D/ro = 10, Lo/ro = 200, and A/Lo =

5.0 x 10-8.
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In Fig. 5.13 the strength of turbulence is held constant regardless of the length of

propagation allowing for an isolation of the effects of changing L/Lo. For longer propa-

gation paths the relative phase perturbations decrease while the amplitude perturbations

increase. Since phase perturbations have the greatest effect on the psf, the Strehl ratios

rise as the phase perturbations decrease.

From Fig. 5.13 one can see using the amplitude/phase screen image centroid to

estimate tilt correction allows for a higher Strehl ratio, SRUTAP, over the Strehl ratios,

SRUT and SRUTP, that use the phase to estimate the correction. Equations (5.12) and

(5.13) map the centroid location to the tilt correction required to move the centroid to

the center of the image. Since the phase as well as the amplitude perturbations affect the

position of the centroid, subtracting the average phase tilt over the screen will not take into

account the effect the amplitude perturbations have on the image centroid. If, however,

the phase and amplitude screen image centroid is used to determine the tilt correction, the

phase and amplitude image centroid will move closer to the center of the image. The less

movement of the image centroid the higher the Strehl ratio will be for the ensemble.
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Figure 5.13 Strehl ratios of the simulated wavefront are plotted versus LILo for D/tr =

10, Lo/ro = 200, and A/Lo = 5.0 x 10-8. Strehl ratios are plotted for
the compensated screen with phase/amplitude centroid, SRUTAP, compen-
sated screen with actual phase tilt, SRUT, compensated screen with phase
centroid, SRUTP, and uncompensated screen, SR.
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In Fig. 5.14, as the strength of turbulence, Lo/ro, increases the uncompensated Strehl

ratio, SR, remains relatively constant. As Lo/ro increases and D/ro is held constant the

lower order phase perturbations increase (i.e., more tilt) while the higher order pertur-

bations decrease (i.e., flatter screens). The mean square tilt over the aperture increases

significantly as seen in Fig. 5.3, but the decrease in higher order phase perturbations coun-

teracts the effects of the larger tilt. Therefore, as the screens flatten due to increases in

Lo/ro, the Strehl ratios of the compensated screens will be higher. As before, the screens

compensated by the phase/amplitude centroid calculated tilt had the highest Strehl ratio.
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Figure 5.14 Strehl ratios of the simulated wavefront are plotted versus Lo/ro for D/ro =
10, L/Lo = 10000, and A/Lo = 5.0 x 10-8. Strehl ratios are plotted for the

compensated screen with phase/amplitude centroid, SRUTAP, compensated
screen with actual phase tilt, SRUT, compensated screen with phase cen-
troid, SRUTP, and uncompensated screen, SR.
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From Fig. 5.15 notice how increasing A/Lo has nearly the same effect as increasing

L/Lo. This similar relationship is due to the mean square value of the amplitude and

phase perturbations' dependence upon L as seen in Figs. 2.5 and 2.6.
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Figure 5.15 Strehl ratios of the simulated wavefront are plotted versus A/Lo for D/ro =
10, L/Lo = 10000, and Lo/ro = 200. Strehl ratios are plotted for the
compensated screen with phase/amplitude centroid, SRUTAP, compensated
screen with actual phase tilt, SRUT, compensated screen with phase cen-
troid, SRUTP, and uncompensated screen, SR.
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Figure 5.16 shows how increasing the ratio D/ro significantly decreases the Strehl

ratio. Fried parameter, r,, can be interpreted as the limiting aperture size beyond which

the turbulence does not affect the resolution. Therefore, as D/ro gets larger the more the

turbulence limits the resolution. The improvement in the Strehl ratio due to tilt removal

becomes negligible as D/ro approaches 100. Removing the tilt from the screen becomes

negligible since as the aperture diameter increases the average tilt over the aperture de-

creases significantly as shown in Fig. 5.5.
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Figure 5.16 Strehl ratios of the simulated wavefront are plotted versus D/r, for A/Lo =

5.0 x 10-8, L/Lo = 10000, and Lo/ro = 200. Strehl ratios are plotted for
the compensated screen with phase/amplitude centroid, SRUTAP, compen-
sated screen with actual phase tilt, SRUT, compensated screen with phase
centroid, SRUTP, and uncompensated screen, SR.
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5.3 Comparisons of simulations using correlated versus uncorrelated phase and am-

plitude screens

In this section the same calculations are implemented as in the last section but this

time the uncorrelated phase and amplitude screens are compared to calculations using the

correlated screens. The amplitude and phase screens for the uncorrelated and correlated

case will both be calculated using Dp = 1.5. These calculations will be performed to deter-

mine if implementing the cross correlation affects the results in any way. The parameters,

LILo and Lo/ro, were chosen to be studied since varying these parameters had different

effects on the Tmse and the Strehl ratios.

5.3.1 Mean Square Error in the Tilt Estimation with correlated versus uncorre-

lated screens. The mean square error in the tilt estimation was calculated for both the

correlated and uncorrelated phase and amplitude screens to determine whether the cross

correlation has any effect on the results. Figures 5.17 and 5.18 show how Tins and Tmse

vary with L/LO for the correlated and uncorrelated screens, respectively. The uncorre-

lated case seemed to have a slightly higher Tins and Tmse for the amplitude/phase screen.

Figures 5.19 and 5.20 show how Tin and Tmse vary with Lo/ro for the correlated and

uncorrelated screens, respectively. This time, the correlated screens case seemed to have

a slightly higher Tins, but slightly lower Trn, for the amplitude/phase screen. As one can

see the mean square error in the tilt estimation is not significantly affected by the cross

correlation of the amplitude and phase.

5.3.2 Strehl Ratio Calculation with correlated versus uncorrelated screens.

Strehl ratios were calculated for both the correlated and uncorrelated phase and amplitude

screens to determine whether the cross correlation has any effect on the results. Figures

5.21 and 5.22 show how the Strehl ratios vary with L/LO for the correlated and uncorrelated

screens, respectively. Figures 5.23 and 5.24 show how the Strehl ratios vary with Lo/ro

for correlated and uncorrelated screens, respectively. The Strehl ratios for the correlated

and uncorrelated screens are just slightly different, but SRUT and SRUTP are consistently

slightly higher for the correlated screens than the uncorrelated screens.
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Figure 5.17 The amplitude and phase screen are correlated by the cross correlation.
The mean square error in the tilt estimation, Tmse, and the mean square
tilt, Tins, are plotted versus LILo for D/ro = 10, Lo/ro = 200, and A/Lo =
5.0 x 10-8. The Tmse is calculated twice, once using the phase and amplitude
screen case and once for the phase screen only case. The Tin is calculated
by computing the average slope of the phase over the screen. Dp/Lo =

DA/Lo = D/Lo -- D/Lo = 1.5.
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Figure 5.18 The amplitude and phase screen are uncorrelated. The mean square error
in the tilt estimation, Tmse, and the mean square tilt, Tins, are plotted versus
L/Lo for D/ro = 10, Lo/ro = 200, and A/L, = 5.0 x 10- 8 . The Tmse is
calculated twice, once using the phase and amplitude screen case and once
for the phase screen only case. The Tins is calculated by computing the
average slope of the phase over the screen. DA/Lo = 1.5 and DO/Lo = 1.5.
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Figure 5.19 The amplitude and phase screen are correlated by the cross correlation.
The mean square error in the tilt estimation, Tmse, and the mean square
tilt, Tins, are plotted versus Lo/ro for D/ro = 10, LILo = 10000, and
A/Lo = 5.0 x 10-8. The Tmae is calculated twice, once using the phase and
amplitude screen case and once for the phase screen only case. The Tins
is calculated by computing the average slope of the phase over the screen.
Dp/Lo DA/Lo = DOI/Lo =D7 /Lo = .5.
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Figure 5.20 The amplitude and phase screen are uncorrelated. The mean square error
in the tilt estimation, Tise, and the mean square tilt, Tins, are plotted versus
Lo/ro for D/ro = 10, L/Lo = 10000, and A/Lo = 5.0 x 10-8. The Tmse is
calculated twice, once using the phase and amplitude screen case and once
for the phase screen only case. The Tins is calculated by computing the
average slope of the phase over the screen. DA/Lo = 1.5 and D¢/Lo = 1.5.
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Figure 5.21 The amplitude and phase screen are correlated by the cross correla-
tion. Strehl ratios of the simulated wavefront are plotted versus L/Lo
for D/r0 = 10, L0/r0 = 200, and A/L0 = 5.0 × 10-8. Strehl ra-
tios are plotted for the compensated screen with phase/amplitude cen-
troid, SRUTAP, compensated screen with actual phase tilt, SRUT, com-
pensated screen with phase centroid, SRUTP, and uncompensated screen,
SR. D 7/Lo=DA/Lo=D'/Lo=D7 /Lo= 1.5.
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Figure 5.22 The amplitude and phase screen are uncorrelated. Strehl ratios of the
simulated wavefront are plotted versus L/Lo for D/r0 = 10, L0/ro = 200,
and A/Lo = 5.0 x 108. Strehl ratios are plotted for the compensated screen

with phase/amplitude centroid, SRUTAP, compensated screen with actual
phase tilt, SRUT, compensated screen with phase centroid, SRUTP, and
uncompensated screen, SR. DA/L 0 = 1.5 and DA=/L0 = 1.5.
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Figure 5.23 The amplitude and phase screen are correlated by the cross correla-
tion. Strehl ratios of the simulated wavefront are plotted versus Lo/ro
for D/ro = 10, L/Lo = 10000, and A/Lo = 5.0 X 10-8. Strehl ra-
tios are plotted for the compensated screen with phase/amplitude cen-
troid, SRUTAP, compensated screen with actual phase tilt, SRUT, com-
pensated screen with phase centroid, SRUTP, and uncompensated screen,
SR. Dp/L o = DA/L = DO/Lo =D/Lo = 1.5.
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Figure 5.24 The amplitude and phase screen are uncorrelated. Strehl ratios of the
simulated wavefront are plotted versus LO/rO for D/ro = 10, L/LO = 10000,
and A/Lo = 5.0 x 10-8. Strehl ratios are plotted for the compensated screen
with phase/amplitude centroid, SRUTAP, compensated screen with actual
phase tilt, SRUT, compensated screen with phase centroid, SRUTP, and
uncompensated screen, SR. DA/Lo = 1.5 and DO/Lo = 1.5.
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5.3.3 Conclusions about using correlated versus uncorrelated screens. In this

study uncorrelated screens were used since the amplitude perturbations were not suffi-

ciently represented in the FS expansion. There are slight differences between using cor-

related versus uncorrelated screens, but the reduction in the amplitude perturbations due

to the under representation proved to be of greater concern. Correlated screens could

have been used in this study if more FS coefficients were used in the amplitude screen

generation, but the matrix dimensions required (1080 x 1080) made the calculation too

computationally intensive.
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VI. Conclusions and Recommendations

6.1 Conclusions

A new atmospheric turbulence screen generator was developed for use in performance

simulations of adaptive optics algorithms valid over a wide range of atmospheric turbulence

parameters, incorporating both phase and amplitude effects. Most screen generators only

calculate the phase perturbations over the aperture [2,4,11,12,15]. The screen generator

developed here accounts for diffraction effects caused by weak turbulence by incorporating

the phase, amplitude, and cross statistics of the perturbed optical field. The wavefront's

phase and amplitude perturbations were taken from the correlation functions developed

by Lee and Harp. The cross statistics of Lee and Harp's weak turbulence model were

developed here for the first time and were incorporated into the screen generator. Since

the amplitude perturbations cannot be corrected with adaptive optics, the theoretical

limit of an adaptive optics system is bounded by the effects of the amplitude pertubations.

Using both the amplitude and phase perturbations, one can more accurately simulate the

performance of an adaptive optics system. Since a weak index of refraction fluctuation

model was used in the development, the screen generator will not predict effects of strong

turbulence, such as the saturation of the log-amplitude fluctuations.

For independent uncorrelated phase and amplitude screens the mean square value and

structure functions of the Monte Carlo simulation were within 1% of the theoretical values.

Due to differences in the amplitude and phase power spectral densities and computational

limits on the matrix size in the calculations, the simulations for the correlated screens were

within 7% of the theoretical values for the amplitude, 1% for the phase, and 1% for the

cross statistics.

Incorporating the cross correlation into the simulations had a negligible effect on

the results obtained and therefore the uncorrelated phase and amplitude screens were

used to more accurately represent the phase and amplitude perturbations. Monte Carlo

experiments performed using the screen generator showed the amplitude perturbations

can significantly reduce the accuracy of full-aperture tilt estimation using image centroid

motion.

6-1



In contrast, using the same amplitude/phase screen image centroid to estimate tilt

correction allows for a higher Strehl ratio than using only the phase to estimate the correc-

tion. The tilt estimation algorithm maps the image centroid location to the tilt correction

required to move the centroid to the center of the image. Since the phase as well as the

amplitude perturbations affect the position of the centroid, subtracting the average phase

tilt over the screen will not take into account the effect the amplitude perturbations have

on the image centroid. If, however, the phase and amplitude screen image centroid is

used to determine the tilt correction, the phase and amplitude image centroid will move

closer to the center of the image. The less movement of the image centroid the higher the

Strehl ratio will be for the long exposure image. Therefore, using the tilt estimator on the

combined phase and amplitude screen resulted in higher Strehl ratios over subtracting the

average tilt over the aperture.

6.2 Recommendations for Further Study

6.2.1 Screen Generation. In this thesis the turbulence is modeled as uniform

over the propagation path which is often appropriate for horizontal propagation paths. A

layered approach could be implemented to accurately represent the strength of turbulence

profile up through the atmosphere. Using Taylor's frozen flow hypothesis one could also

incorporate the time statistics into the amplitude and phase screen generator. As in

Welsh's paper on phase screen generation one could incorporate the layered representation

of the phase and amplitude, incorporate the temporal statistics, and provide for off-axis

calculations to include the effects of anisoplanatism [15].

6.2.2 Simulations. The atmospheric turbulence generator developed in this thesis

can be used to study the effects of amplitude perturbations on all sorts of adaptive optics

alogorithms. The screen generator can also be used to determine the effects of different

atmospheric conditions on imaging systems or laser propagation. Including the phase and

amplitude perturbations in simulations will allow one to more accurately simulate the

complete performance of an adaptive optics system.
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